Asymptotic Convergence of a New Spectral Method for the Solution in Time of Finite Element Flow Equations
نویسندگان
چکیده
An eecient method (DACG, Deeated Accelerated Conjugate Gradient) has recently been developed, based on the conjugate gradient (CG) minimization of the Rayleigh quotient over successive deeated subspaces of decreasing size. A new version of this algorithm is presented and discussed to evaluate the 40 leftmost eigenpairs of FE problems of increasing size up to 10500. Its asymptotic convergence rate is shown to be inversely proportional to the square root of the spectral condition number of the Hessian of the Rayleigh quotient in the current restricted subspace. Numerical results show that preconditioning the CG method with the inverse of the incomplete factors greatly improves convergence which may prove to be slow only toward very close eigenvalues.
منابع مشابه
The new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملFree and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method
In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...
متن کاملThe new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملSpectral Finite Element Method for Free Vibration of Axially Moving Plates Based on First-Order Shear Deformation Theory
In this paper, the free vibration analysis of moderately thick rectangular plates axially moving with constant velocity and subjected to uniform in-plane loads is investigated by the spectral finite element method. Two parallel edges of the plate are assumed to be simply supported and the remaining edges have any arbitrary boundary conditions. Using Hamilton’s principle, three equations of moti...
متن کاملFinite Volume Solution of a Cylinder in Cross Flow with Heat Transfer
A finite-volume model has been developed to study incompressible forced flow heat transfer of air over a circular cylinder in cross flow. An artificial compressibility technique is applied to couple the continuity to the momentum equations. The proposed explicit finite-volume method (FVM) uses a novel discretization in time and space. The governing equations are solved by time-marching using a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007